
More sophisticated behavior

Using library classes to implement
some more advanced functionality

5.0

2

Main concepts to be covered

• Using library classes
• Reading documentation

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

3

The Java class library

• Thousands of classes.
• Tens of thousands of methods.
• Many useful classes that make life

much easier.
• Library classes are often inter-

related.
• Arranged into packages.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

4

Working with the library

• A competent Java programmer must
be able to work with the libraries.

• You should:
• know some important classes by name;
• know how to find out about other

classes.

• Remember:
• we only need to know the interface, not

the implementation.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

5

A Technical Support System

• A textual, interactive dialog system
• Idea based on ‘Eliza’ by Joseph

Weizenbaum (MIT, 1960s)
• Explore tech-support-complete …

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

6

Main loop structure

boolean finished = false;

while(!finished) {

do something

if(exit condition) {
finished = true;

}
else {

do something more
}

}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

A common
iteration
pattern.

7

Main loop body

String input = reader.getInput();
...
String response = responder.generateResponse();
System.out.println(response);

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

8

The exit condition

String input = reader.getInput();

if(input.startsWith("bye")) {

finished = true;

}

• Where does ‘startsWith’ come
from?

• What is it? What does it do?
• How can we find out?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

9

Reading class documentation

• Documentation of the Java libraries
in HTML format;

• Readable in a web browser
• Class API: Application Programmers’

Interface
• Interface description for all library

classes

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

10Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

11

Interface vs implementation

The documentation includes
• the name of the class;
• a general description of the class;
• a list of constructors and methods
• return values and parameters for

constructors and methods
• a description of the purpose of each

constructor and method

the interface of the class

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

12

Interface vs implementation

The documentation does not include

• private fields (most fields are private)
• private methods
• the bodies (source code) of methods

the implementation of the class

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

13

Documentation for startsWith

• startsWith
– public boolean startsWith(String prefix)

• Tests if this string starts with the
specified prefix.

• Parameters:
– prefix - the prefix.

• Returns:
– true if the …; false otherwise

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

14

Methods from String

• contains

• endsWith

• indexOf

• substring

• toUpperCase

• trim

• Beware: strings are immutable!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

15

Using library classes

• Classes organized into packages.
• Classes from the library must be

imported using an import statement
(except classes from the java.lang
package).

• They can then be used like classes
from the current project.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

16

Packages and import

• Single classes may be imported:

import java.util.ArrayList;

• Whole packages can be imported:

import java.util.*;

• Importation does not involve source
code insertion.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

17

Using Random

• The library class Random can be used
to generate random numbers

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

import java.util.Random;
...
Random rand = new Random();
...
int num = rand.nextInt();
int value = 1 + rand.nextInt(100);
int index = rand.nextInt(list.size());

18

Selecting random responses

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public Responder()
{

randomGenerator = new Random();
responses = new ArrayList<String>();
fillResponses();

}

public void fillResponses()
{

fill responses with a selection of response strings
}

public String generateResponse()
{

int index = randomGenerator.nextInt(responses.size());
return responses.get(index);

}

19

Parameterized classes

• The documentation includes provision
for a type parameter:
– ArrayList<E>

• These type names reappear in the
parameters and return types:
– E get(int index)

– boolean add(E e)

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

20

Parameterized classes

• The types in the documentation are
placeholders for the types we use in
practice:
– An ArrayList<TicketMachine>

actually has methods:
– TicketMachine get(int index)

– boolean add(TicketMachine e)

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

21

Review

• Java has an extensive class library.
• A good programmer must be familiar with

the library.
• The documentation tells us what we need

to know to use a class (its interface).
• Some classes are parameterized with

additional types.
• Parameterized classes are also known as

generic classes or generic types.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

More sophisticated behavior

Using library classes to implement
some more advanced functionality

23

Main concepts to be covered

• Further library classes
• Set

• Map

• Writing documentation
• javadoc

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

24

Using sets

import java.util.HashSet;

...

HashSet<String> mySet = new HashSet<String>();

mySet.add("one");

mySet.add("two");

mySet.add("three");

for(String element : mySet) {

do something with element

}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Compare
with code

for an
ArrayList!

25

Tokenising Strings
public HashSet<String> getInput()

{

System.out.print("> ");

String inputLine =

reader.nextLine().trim().toLowerCase();

String[] wordArray = inputLine.split(" ");

HashSet<String> words = new HashSet<String>();

for(String word : wordArray) {

words.add(word);

}

return words;

}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

26

Maps

• Maps are collections that contain
pairs of values.

• Pairs consist of a key and a value.
• Lookup works by supplying a key, and

retrieving a value.
• Example: a telephone book.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

27

Using maps

• A map with strings as keys and values

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

28

Using maps

HashMap <String, String> phoneBook =
new HashMap<String, String>();

phoneBook.put("Charles Nguyen", "(531) 9392 4587");
phoneBook.put("Lisa Jones", "(402) 4536 4674");
phoneBook.put("William H. Smith", "(998) 5488 0123");

String phoneNumber = phoneBook.get("Lisa Jones");
System.out.println(phoneNumber);

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

29

List, Map and Set

• Alternative ways to group objects.
• Varying implementations available:

– ArrayList, LinkedList
– HashSet, TreeSet

• But HashMap is unrelated to
HashSet, despite similar names.

• The second word reveals
organizational relatedness.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

30

Writing class documentation

• Your own classes should be
documented the same way library
classes are.

• Other people should be able to use
your class without reading the
implementation.

• Make your class a potential 'library
class'!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

31

Elements of documentation

Documentation for a class should include:
• the class name
• a comment describing the overall purpose

and characteristics of the class
• a version number
• the authors’ names
• documentation for each constructor and

each method

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

32

Elements of documentation

The documentation for each constructor and
method should include:

• the name of the method
• the return type
• the parameter names and types
• a description of the purpose and function

of the method
• a description of each parameter
• a description of the value returned

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

33

javadoc

Class comment:

/**

* The Responder class represents a response

* generator object. It is used to generate an

* automatic response.

*

* @author Michael Kölling and David J. Barnes

* @version 1.0 (2011.07.31)

*/

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

34

javadoc

Method comment:

/**
* Read a line of text from standard input (the text
* terminal), and return it as a set of words.
*
* @param prompt A prompt to print to screen.
* @return A set of Strings, where each String is
* one of the words typed by the user
*/

public HashSet<String> getInput(String prompt)
{

...
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

35

Public vs private

• Public elements are accessible to
objects of other classes:
• Fields, constructors and methods

• Fields should not be public.
• Private elements are accessible only

to objects of the same class.
• Only methods that are intended for

other classes should be public.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

36

Information hiding

• Data belonging to one object is hidden
from other objects.

• Know what an object can do, not how
it does it.

• Information hiding increases the level
of independence.

• Independence of modules is important
for large systems and maintenance.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

37

Code completion

• The BlueJ editor supports lookup of
methods.

• Use Ctrl-space after a method-call
dot to bring up a list of available
methods.

• Use Return to select a highlighted
method.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

38

Code completion in BlueJ

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

39

Review

• Java has an extensive class library.
• A good programmer must be familiar with

the library.
• The documentation tells us what we need

to know to use a class (interface).
• The implementation is hidden (information

hiding).
• We document our classes so that the

interface can be read on its own (class
comment, method comments).

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Class and constant variables

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael
Kölling

41

Class variables

• A class variable is shared between all
instances of the class.

• In fact, it belongs to the class and
exists independent of any instances.

• Designated by the static keyword.

• Public static variables are accessed
via the class name; e.g.:
– Thermometer.boilingPoint

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

42

Class variables

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

43

Constants

• A variable, once set, can have its
value fixed.

• Designated by the final keyword.
– final int max = list.size();

• Final fields must be set in their
declaration or the constructor.

• Combing static and final is
common.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

44

Class constants

• static: class variable
• final: constant
private static final int gravity = 3;

• Public visibility is less of an issue
with final fields.

• Upper-case names often used for
class constants:

public static final int BOILING_POINT = 100;

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

